IITERM EXAMINATION: 202021

Class: XII (ISC)

PHYSICS PAPER - I (THEORY) Time: 3 hrs. M.M.: 70

(Condidates are allowed additional 15 minutes for only reading this paper. They must NOT start writing *during this time.*)

- *All questions are compulsory.* 1)
- *This question paper is divided in 4 section A, B, C and D as follows:* 2)
 - Section A: Question number 1 is of twelve marks. All parts of this question are compulsory.
 - ii) Section B: Question number 2 to 12 carry 2 marks each with two questions having internal choice.
 - Section C: Question numbers 13 to 19 carry 3 marks each with two questions having iii) internal choice.
 - Section D: question numbers 20 to 22 are long answer type questions and carry 5 marks v) each. Each question has an internal choice.
- 3) *The intended marks for questions are given in brackets* [].
- 4) All working, including rough work, should be done on the same sheet as and adjacent to the rest of the answer.
- 5) A list of useful physical constants is given at the end of this papers.
- A simple scientific calculator without a programmable memory may be used for calculations. 6)

SECTION 'A'

Answer all questions

Q. 1. A)	Choose the correct alternative (a), (b), (c) or (d) for each of the questions g	iven
	below:	$[5 \times 1 = 5]$

i)	Which of the following is true for ferromagnetic:								
	a)	μ _. >1	b)	$\mu_{r} >> 1$	c)	μ _. >1	d)	μ,=	

The Biot-savart's law in vector form is: ii)

a)
$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{d\ell \left(\vec{i} \times \vec{r} \right)}{r^3}$$
 b)
$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{i \left(\vec{r} \times \vec{d\ell} \right)}{r^2}$$

c)
$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{i(\vec{d\ell} \times \vec{r})}{r^3}$$

$$d) \qquad d\vec{B} = \frac{\mu_0}{4\pi} \frac{i(\vec{d\ell} \times \vec{r})}{r^2}$$

- iii) Sensitivity of a moving coil galvanometer can be increased by:
 - increasing number of turns
 - increasing magnetic field intensity B. b)
 - increasing area of the coil c)
 - All of the above d)
- The dimensional formula for impedance is: iv)
 - $[ML^2T^2A^2]$
- $[ML^2T^3 A^2]$ b)
- $[ML^2T^2A^1]$ c)
- $[ML^2T^2A^3]$ d)
- When a 100W-240V bulb is operated at 200 V the current in it is: v) 35 A $0.42\,\mathrm{A}$ iii) 0.50 Aiv)
- Answer the following questions to the point and briefly :: B)

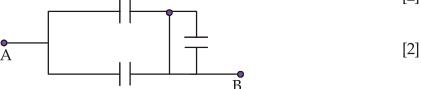
ii)

0.58A $[7 \times 1 = 7]$

- Write an expression for the magnitude of the magnetic field \overrightarrow{B} at the i) centre of a circular coil of N turns.
 - ii) What is the resistance of an ideal voltmeter?
 - State the SI unit of magnetic dipole moment, indicating its direction. iii)
 - Define curie temperture. iv)

- v) At resonance, what is the relation between impedance of a series LCR circuit and its resistance R?
- State Obm's law vi)
- vii) Find the focal length and nature of a lens whose optical power is -50.

SECTION 'B'


(Answer all questions)

- Two lenses having power +2.5D and -4D are kept in contact. What is the focal length Q.2. of this combination? [2]
 - [2]
- Q.3. State Ampere's circuital law..

OR

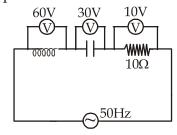
Obtain magnetic flux density \vec{B} at the centre of circular coil of radius R. having single turns, when a current I flow through it.

- With the help of diagram derive the mirror formula for a concave mirror. Q.4. [2]
- Q.5. State Ampere's circuital law. [2]
- Q.6. Find equivalent capacitance between A and B.

Q.7. Find total energy in the combination of capacitor.

[2]

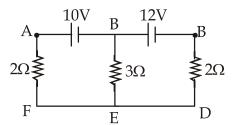
[3]


[3]

- An AC generator generates a voltage 'V' gien by V=311 sin (100 π t) volt. Find the Q.8. rms value of the voltage generated. [2]
- Name the part of the electromagnetic spectrum which is: Q.9. [2]
 - suitable for radar systems used in aircraft navigation.
 - produced by bombarding a metal target with high speed electrons.
- Q.10. What are equipotential surfaces give any two examples.
- Q.11. State the factors on which the deviation produced by a prism depends.
- [2] Q.12. Derive $\mu_r = 1 + \chi$

SECTION-C

Answer all questions


- Q.13. Derive lens makers formula.
- Q.14. AC circuit has a resistance, capacitor and an inductance connected in series as shown below calculate the i_{rms} and power factor in the circuit also find i_{rms} . [3]

- Q.15. A Helium nucleus (charge +2e) completes one round of a circle 0.8 m in 2s. Find the magnetic field at the centre of the circle.
- Q.16. Draw a labelled circuit diagram of potentiometer to measure internal resistance of a cell. Write the working formula. [3]

- Q.17. Obtain an expression for the Torque acting on an electric dipole placed in a uniform electric field . Write also its vector form.
- [3] [3

Q.18. Find current in each branch.

Q.19. A 200 turn coil of self inductance 20 mH carries a current 4mA. Find the magnetic flux linked with each turn of coil. [3]

OR

State and explain faraday's law of electromagnetic induction. What is the significance of the negative sign in the first law?

SECTION-D

Answer all questions

Q.20. For any prism, show that the refractive index of its material is given by

$$n = \frac{\sin \frac{(A + \delta m)}{2}}{\sin A/2}$$
. Draw graph showing variation of δm with 'i'. [5]

OR

A small air bubble is entraped in a sphere of radius 4 cm at a distance of 1 cm frm the centre of sphere. Where will the bubble appear when seen through the surface :

- a) nearest to the bubble.
- b) farthest from the bubble ? take $\mu_g = 1.5$
- Q.21 Show that the magnetic field at the axis of a current carrying circular loop is

$$B = \frac{\mu_0 N I a^2}{2(a^2 + x^2)^{\frac{3}{2}}}$$
 with proper diagram. [5]

OR

Using diagram derive the expression of motional emf developed in conductor of length ℓ moving with velocity v perpendicular to uniforms magnetic field B. Obtain the relation

for mechanical power $P = \frac{B^2 \ell^2 V^2}{R}$. R is total resistance of circuit.

- Q.22. a) Show that the average power dissipated per cycle in an AC circuit is given by P. $V_{rms} \times i_{rms} \times R/Z$ Where R=resistance of circuit Z= impedance [5]
 - b) Prove that power dissipated in the ideal resistor is connected to AC source is V_{eff}^2/R .

OR

a) State Gauss's Theorem. What is a Gaussian surface. Write the most important property of a Gaussian surface. Find ratio of flux linked with sphere s_1 and s_2 as shown in the diagram.